
The smooth spectral counting function and the total phase shift for quantum billiards

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 2587

(http://iopscience.iop.org/0305-4470/29/10/033)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 2587–2597. Printed in the UK

The smooth spectral counting function and the total phase
shift for quantum billiards

Uzy Smilansky and Iddo Ussishkin
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100,
Israel
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Abstract. The interior–exterior duality provides a means to extract spectral information (for
the interior problem) from the scattering matrix (which is relevant to the exterior problem). We
study the smooth spectral counting function for the interior, and compare it to the smooth total
phase shift in the exterior. To leading order in the semiclassical approximation these functions
are known to coincide. Using various techniques, we study the higher-order corrections of the
two functions and discuss the difference between them.

1. Introduction

A billiard boundary can serve to define two seemingly unrelated physical systems. It may
bind a particle (or a wavefunction) to theinterior, or act as an obstacle when particles (or
waves) scatter from theexterior. During the past few years, an intimate duality between
the interior and the exterior problems was established on both the classical and the quantum
(wave) levels. In the quantum domain, this implies a link between the spectrum of the
interior problem and the properties of the scattering matrixS(k), where k is the wave
number. Stated in crude terms, it says that wheneverk approaches an eigenvaluekn from
below, an eigenvalue ofS(k) approaches unity from the upper half plane (the scattering
matrix is unitary and its eigenvalues are on the unit circle). The reverse is also true—the
approach of an eigenvalue of theS(k) matrix to 1 marks the approach ofk to an eigenvalue
of the interior problem. The interior–exterior duality is reviewed in [1] and various aspects
and applications are given in [2–4]. The rigorous formulation is presented in [5].

Denoting the eigenvalues ofS(k) by exp[−iθl(k)], and making use of the interior–
exterior duality, the interior spectral density,d(k), is expressed as

d(k) =
∞∑

n=1

δ(k − kn) = lim
ε→0+

∑
l

δ2π [θl(k) + ε]θ ′
l (k) (1)

whereδ2π (x) is the 2π periodic Diracδ function. It is assumed thatθ ′
l (k) > 0 (at least in

a region−ε < θl mod 2π < 0 for some positiveε). Equation (1) can be expressed in an
alternative way by using the Poisson summation formula, and by taking the limit as

d(k) = 1

2π
2′(k) + 1

π
Im

∞∑
m=1

1

m
Tr

[
d

dk
S†m(k)

]
(2)
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where2(k) is the total phase shift, defined by det[S(k)] = exp[−i2(k)]. It is a continuous
function of k, and2(0) = 0. For further use it is convenient to introduce

η(k) = 1

2π
2(k) . (3)

One can get a physical interpretation and a leading-order estimate ofη(k) by recalling
the definition of the Wigner mean delay time [1] as

τ(E) = h̄

i3
Tr

[
S†(E)

dS(E)

dE

]
(4)

where3 is the number of effective scattering modes. It is given by the integer part of
kL/π , whereL is the circumference of the billiard. To get the leading-order estimate for
η(k), we assume for simplicity that the billiard is convex, and estimate the mean delay time
by −〈c〉/v, where〈c〉 is the mean chord length of the billiard. (Note that the mean delay
time is negative because in this case one actually saves time, on average.) The mean chord
length is given by〈c〉 = Aπ/L, whereA is the area of the billiard. Finally, we have

η′(k) = h̄v
dη(E)

dE
≈ 3〈c〉

2π
≈ Ak

2π
. (5)

This coincides with the leading term in Weyl’s formula for the smooth level density of
the interior billiard problem. The coincidence (to leading order) between the asymptotic
expression (5) and the Weyl formula is not surprising. Due to the Kreı̆n spectral shift
formula [6] we can interpretη′(k) as the excess spectral density in the continuum due to the
introduction of the scatterer. To leading order, this is equal to the volume of phase space
excluded because of the presence of the scatterer, measured in units of 2πh̄. However,
this is also the estimate of the interior spectral density. This identity was first shown in
the mathematical literature in [7]. They derived (5) for quite a general class of billiard
shapes in any number of dimensions. Several authors [8–10] obtained similar results and
also considered higher terms in the asymptotic series forη(k).

Semiclassically, the density of states is divided into a smooth partd̄(k), described
by Weyl’s formula, and an oscillatory part, described as a sum over periodic orbits (the
Gutzwiller sum). This description can be derived by semiclassical arguments from (2).
The smooth part is described by Weyl’s law from (5), and the sum over periodic orbits
comes from the infinite sum on the right. In addition, both terms in (2) have oscillatory
contributions of classical orbits which are trapped in the exterior (which exactly cancel each
other). The functionη(k) is thus not a smooth function, but may be divided into a smooth
part η̄(k) and an oscillatory part. The smooth partη̄(k) will be properly defined in the next
section.

The surprise, which is the main concern of the present work, comes when one compares
the next terms in the high-k asymptotic expansion of̄η′(k) and the corresponding terms in the
Weyl asymptotic expansion for the smooth spectral densityd̄(k): the circumference terms
are opposite in sign! Moreover, we provide convincing evidence thatall the coefficients,
except for the area term, in the asymptotic expansion ofη′(k) are equal in magnitude to
the corresponding terms in the asymptotic expansion ofd̄(k) but are of opposite sign. The
circumference term is just the first of this kind. To illustrate this point, consider a circle
billiard of unit radius with Dirichlet boundary conditions. Then,

d̄c,D(k) ≈ k

2
− 1

2
− 1

128k2
+ 111

32 768k4
+ · · · (6)

to be compared with

η̄′
c,D(k) ≈ k

2
+ 1

2
+ 1

128k2
− 111

32 768k4
+ · · · . (7)
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Note that for the circleη(k) is asymptotically equal to its smooth partη̄(k) (this point is
elaborated in section 3). The corresponding expressions for a circular billiard with Neumann
boundary conditions are

d̄c,N(k) ≈ k

2
+ 1

2
− 5

128k2
+ 807

32 768k4
+ · · · (8)

to be compared with

η̄′
c,N(k) ≈ k

2
− 1

2
+ 5

128k2
− 807

32 768k4
+ · · · . (9)

Note that the expressions for̄dc,D(k) and η̄′
c,N(k) coincide up to the second term. The

magnitude of the coefficients is different from the third term and beyond.
Various authors in the mathematical literature estimated the second term in the

asymptotic series and compared it to the corresponding term in the Weyl series [8–10].
The sign in the second term of the asymptotic expansion ofη(k) in [8] differs from the
sign in [9, 10], and in (7). We cannot trace the origin of this difference. (We assume that
the sign of the second term in the expression forN(k) in [10] is a misprint, because it
contradicts well known results [11].)

In the next section we shall derivēη′
c,D(k) (equation (7)) and will show that for the

circle, all the coefficients, except for the area term, differ in sign from the corresponding
terms in the asymptotic expansion ofd̄c,D(k) (equation (6)). For any other smooth shape, we
cannot prove this statement in full generality, but can use results of Berry and Howls [12]
to show that it holds at least for the leading 13 terms (for Dirichlet boundary conditions).

Another problem which we should address originates from the following observation.
If η̄(k) does not provide the entire smooth counting function, the deficit, which (to leading
order) is twice the circumference term (and hence proportional tok), must come from the
infinite sum on the right-hand side of (2). However, this was argued previously to yield
the oscillatory contributions to the spectral functions. At the end of the next section we
consider this problem for the circular billiard.

The interior–exterior duality does not apply exclusively to scattering problems in the
plane. As a matter of fact, one can define similar relations where the scattering is defined by
attaching waveguides to the billiard, [1, 2, 13, 14]. The total phase for such systems plays a
similar role in this formulation, and we shall compare its asymptotic expansion with that of
the corresponding Weyl series. This topic, together with a few other relevant points, will
be discussed in section 3.

2. The smooth part of the total phase shift

We shall start by defining what we mean by the smooth part of total phase shift. For this
purpose, we adapt the method of [12, 15] to the present problem. The starting point is
Krĕın’s spectral shift formula

− 1

π
Im lim

ε→0+
Tr[G+(k + iε) − G+

0 (k + iε)] = 1

2k
η′(k) (10)

whereG+
0 (k) is the free Green function with outgoing boundary conditions, andG+(k) is

the Green function for theexterior of the billiard, with the appropriate condition on the
billiard boundary, and outgoing boundary conditions at infinity. Thetrace operation in (10)
is understood as an integration over theentire plane, andG+(r, r, k) = 0 for r ∈ �. To



2590 U Smilansky and I Ussishkin

extractη̄(k) we first derive an asymptotic expression for Tr[G+(k) − G+
0 (k)] for imaginary

k = is, ands > 0. We define

gout(s) ≡ Tr[G+(k = is) − G+
0 (k = is)] (11)

and assume an asymptotic expansion of the form

gout(s) ≈ − iA

4
+

∞∑
m=1

Cout
m

sm
. (12)

The expansion is led by the area term which we discussed above. (Technically, it comes
from the integral of− Im G+

0 over the interior domain, whereG+ vanishes.) One then
defines the smooth part of the total phase shift by

η̄′(k) ≡ −2k

π
Im gout(s = −ik) . (13)

The oscillatory terms ofη(k) are exponentially small for imaginaryk, and are neglected
in the asymptotic expansion (12). The smooth partη̄(k) is the quantity that remains after
transforming to the imaginary axis, making the asymptotic approximation, and transforming
back to the real axis.

The smoothing operation as defined above follows closely the method of [12, 15] to
extract the smooth part of the spectral density of the interior billiard. Their starting point is

d(k) = Ak

2π
+ 2k

π
Im lim

ε→0+
Tr[G(k + iε) − G+

0 (k + iε)] (14)

where G(k) is now the Green function for theinterior problem with the appropriate
condition on the billiard boundary. One defines the function

gin(s) ≡ Tr[G(k = is) − G+
0 (k = is)] (15)

assumes an asymptotic expansion of the form

gin(s) ≈
∞∑

m=1

C in
m

sm
(16)

and proceeds as before. The main contribution to (12) and (16) comes from the close
vicinity of the boundary [16]. Hence one would expect that the corresponding asymptotic
expansions will be related, the difference might be due only to the change of the sign of
the curvature when one goes from the interior to the exterior. This is indeed the case, and
in the following we shall demonstrate this by a detailed analysis.

2.1. The circle billiard

We calculate explicitly the smooth total phase shift for the circle billiard (centred at the origin
and of unit radius) with Dirichlet boundary conditions. The Green function is explicitly
known, and after some manipulation one gets

gout(s) = −1

2

∞∑
l=−∞

[
−

(
1 + l2

s2

)
Kl(s)Il(s) + I ′

l (s)K
′
l (s) − K ′

l (s)

sKl(s)

]
(17)

where the functionsIl(z), Kl(z) are the modified Bessel functions [17]. The asymptotic
expansion forgout(s) is found by replacing the summation overl by an integral (a step which
introduces exponentially small errors), and by using the uniform asymptotic expansions of
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Il(s) andKl(s) (see equations (9.7.7), (9.7.8) in [17]). This gives the following expression
for the coefficientsCout

m in the asymptotic series (12):

Cout
m =

∫ ∞

0
dx

√
1 + x2

xm
Bout

m

(
x√

1 + x2

)
. (18)

The functionsBout
m (t) are defined implicitly as the coefficients ofl−m of the resulting

expansion,
∞∑

m=1

Bout
m (t)

lm
= 1

2

( ∞∑
m=0

um(t)

lm

)( ∞∑
m=0

(−1)mum(t)

lm

)
+ 1

2

( ∞∑
m=0

vm(t)

lm

)( ∞∑
m=0

(−1)mvm(t)

lm

)
−

( ∞∑
m=0

(−1)mvm(t)

lm

)/( ∞∑
m=0

(−1)mum(t)

lm

)
(19)

where the polynomialsu(t) andv(t) are defined in the uniform asymptotic expansion for the
Bessel functions. Once the functionsBout

m (t) are derived from the above, substituting them
in (18) yields the desired expansion ofgout(s). Using the Krĕın spectral shift formula (10),
the asymptotic expansion for̄ηc,D(k) (equation (7)) immediately follows.

The results of the above calculation may now be compared with the results for the
interior problem [15, 12]. Using the known expressions for the interior Green function for
the circle one gets

gin(s) = −1

2

∞∑
l=−∞

[(
1 + l2

s2

)
Kl(s)Il(s) − I ′

l (s)K
′
l (s) − I ′

l (s)

sIl(s)

]
. (20)

From here one obtains the asymptotic expansion forgin(s) by following the same steps as
in the exterior case. A straightforward calculation shows that

Cout
m = (−1)m+1C in

m . (21)

This provides the desired relation between the asymptotic series for the smooth level
density (6) and thek derivative of the smooth total phase shift (7) for the circle billiard. All
the coefficients of the even powers ofk are equal in sign but opposite in magnitude. The
coefficients of all odd powers, except the area term, vanish (because of the Im operation).
The two series are thus opposite in sign beyond the area term. The results for the numerical
values of the first 31 coefficientsC in

m are given in [12].

2.2. General smooth boundary

The methods developed to calculate the asymptotic expansion ofgin(s) for general smooth
boundaries rely heavily on the fact that the main contribution for larges comes from the
close vicinity of the boundary∂�. In this vicinity, the Green function can be locally
expressed using the local curvatureκ(q) whereq is the arc length along∂�. These same
methods can also be applied for the calculation of the asymptotic series forgout(s), since,
here too, the main contribution comes from the vicinity of∂�. As a matter of fact, one can
read off the asymptotic expansion forgout(s), by replacing the sign ofκ(q) in the expansion
for gin(s).

Balian and Bloch [16] were the first to provide a systematic derivation. Their method
uses the Born series forG(r, r ′) − G+

0 (r, r ′) which is a multiple reflection series. This
method has a severe difficulty since the number of reflections does not determine a unique
power of 1/s in the expansion, and hence, to get theCm coefficients, one has to perform
cumbersome book-keeping which gets complicated asm increases.
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Stewartson and Waechter [15, 12] proposed a convenient variant of the method of Balian
and Bloch, which circumvents some of its difficulties. The Green function in the vicinity of
a pointσ on the boundary is expressed in terms of a charge distribution on the line tangential
to the boundary atσ . The boundary is expanded as a series, with coefficients which depend
on the curvatureκ(σ ) and its derivatives. Successive approximations improve the accuracy
by which the Green function satisfies the boundary conditions in the vicinity ofσ on ∂�.
Finally, the coefficientsC in

m are expressed as

C in
m =

∮
dσ cm(σ ) (22)

wherecm(σ ) depends on the curvature and its derivatives. Berry and Howls [12] calculated
explicit expressions for the leadingcm for m 6 13. One can check that by changing the
sign of κ(σ ), the coefficientcm is multiplied by (−1)m+1. Hence when one changes the
sign ofκ for the calculation ofCout

m one finds that (21) holds for arbitrary (smooth) billiards,
at least form 6 13.

2.3. The smooth part of the rest

Now that we know that the smooth part of the spectral counting function does indeed
differ from the smooth part of the total phase shift (divided by 2π ), we have to go back
to our starting point (2) and show how the infinite sum on the right-hand side provides
the difference, in spite of the fact that it is usually considered only for its oscillatory part.
Unfortunately, we do not have a general result, and we shall therefore concentrate on the
circle billiard as an example.

For the circle billiard, as the scattering matrix is diagonal in the angular momentum
representation, and using the Poisson summation formula, equation (2) may be expressed
as

d(k) = η′(k) + 1

π
Im

∞∑
n=1

∞∑
m=−∞

1

n

∫ ∞

−∞
dl

∂

∂k
exp[inθl(k) + 2π iml] (23)

where the diagonal matrix elements are

Sl(k) = exp[−iθl(k)] = −H−
l (k)

H+
l (k)

(24)

(and is defined for non-integerl by the usual definition of the Bessel functions). The
contribution of the periodic orbit manifolds is derived from the terms with 16 m 6 n − 1
by a saddle-point approximation. The result is a purely oscillatory function. The rest of
the terms are neglected in the semiclassical approximation. It is then reasonable to assume
that it may be possible, by a more careful calculation, to associate with each term a smooth
contribution such that the smooth contributions add up to give the correct difference between
the smooth density of states and the total phase shift. We now show that this is not the
case.

First, consider the terms with 16 m 6 n − 1. These terms are calculated using
the saddle-point approximation, yielding an asymptotic expansion for the integral. All
terms in the asymptotic expansion are oscillatory. We therefore conclude that any smooth
contribution must be exponentially small.

The terms withm < 0 (m > n) may be calculated by closing the contour of integration
in the lower (upper) complexl plane. The method of calculation is similar to the one used
in obtaining the contribution of creeping trajectories [18, 19]. The calculations are given
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in [20], with the final result that the contribution of these terms is exponentially small (as
is typical to creeping orbit calculations).

Finally, we consider the terms withm = 0 andm = n. For n = 1 the contribution
is related to the forward scattering amplitude, and by adapting the calculations of [19], we
have ∫ ∞

−∞
dl

∂

∂k
Sl(k) = −1 − C

3k2/3
(25)

whereC ≈ 0.9962eiπ/3. This term is indeed smooth, but has an unexpected dependence
on k, and is of the wrong sign (with respect to the correction we are looking for). The
arguments used in these calculations fail for high values ofn, and for these values numerical
calculations give the only available data. These calculations suggest that the behaviour of
the contribution found forn = 1 is typical for highern values as well. Them = 0 and
m = n thus do not account for the difference in the length term of the smooth part.

It is clear that by adding the smooth terms extracted from each term in the infinite sum
separately finally gives the wrong result. Yet we wish to show that the infinite sum does
have a smooth part which correctly balances the difference betweend̄(k) and η̄′(k). This
will be done by considering complexk in the upper half plane (which is the same idea
behind the previous calculations for the smooth part ofd̄(k) and η̄′(k)).

We first note that the derivative of the total phase shift may be written as

η′(k) = 2

π2k

∞∑
l=−∞

1

H−
l (k)H+

l (k)
. (26)

We now considerk to be in the upper half plane. For suchk we have that|S∗
l (k)| < 1, and

the sum overn in (2) may be resummed, leading to

1

π
Im

∞∑
l=−∞

1

1 − S∗
l (k)

∂S∗
l (k)

∂k
= − Im

2i

π2k

∞∑
l=−∞

1

H−
l (k)Jl(k)

(27)

where the Im operation has a meaning only when (eventually) returning to the realk axis.
Adding the contributions of (26) and (27) one gets for the density of states

d(k) = 2

π2k
Im

∞∑
l=−∞

Yl(k)

Jl(k)H+
l (k)H−

l (k)
. (28)

This is indeed 0 except whenJl(k) = 0, i.e. when the circle has an eigenvalue. Taking
k = k0+ iε, wherek0 is an eigenvalue of the circle, the sum overδ functions is immediately
recovered. Alternatively, one could evaluate the smooth part of (27) directly. To do this
we write the result of (27) as

Im
2i

π2k

∞∑
l=−∞

1

H+
l (k)Jl(k)

. (29)

The quantity in front of the Im operation, fork = is (negative energy), is equal to

− 1

πk

∞∑
l=−∞

1

Il(s)Kl(s)
. (30)

This expression may be expanded as an asymptotic series fors → ∞, using the methods
of section 2.1. The result coincides with the asymptotic series for

−2k

π

[
gin(s) + gout(s)

]
(31)

in all odd terms. This shows that the smooth part of the infinite sum exactly accounts for
the difference between the smooth parts of the density of states and the total phase shift.
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3. Discussion

The main difference between the total phase shift of the exterior problem, and the smooth
spectral counting function of the interior problem, is the sign difference between the
corresponding length terms. This amounts tokL/2π , where L is the circumference of
the billiard. One should bear in mind, however, thatkL/π is the area (in units of 2πh̄) of
the phase space domain where the classical bounce map acts. Hence, the integer part of
this number,3, is the dimension of the Hilbert space where the quantum analogue of the
bounce map is defined. In other words,3 is the number of scattering phase shifts which
are substantially different from zero, or the effective dimension of theS matrix.

In the early discussions of the interior–exterior duality [2], it was argued that one should
consider2(k) − π3(k) as the effective total phase shift, and therefore its smooth part
(divided by 2π ) provides correctly the two leading terms in the smooth counting function
for the interior billiard problem. A simple way to see this is to assume that the3 contributing
phase shifts increase linearly withk, while the rest are negligible. Consider one contributing
phase shiftθ(k), and the corresponding staircaseNθ(k) of those eigenvalues which are found
by θ(k) becoming an integer multiple of 2π . It is then obvious that the smooth part, if it
is to represent some averaging ofNθ(k), should be given byN̄θ (k) = [θ(k) − π ]/2π . The
combined effect of the3 contributing phase shifts adds up to the corresponding expression
for N̄(k). The results of the present paper substantiate the previous heuristic arguments.

The next sign difference occurs only in the fourth term which decreases ask−1. For most
applications this is a negligible correction, but it is not too small to find if it is systematically
looked for. We demonstrate this point by a numerical example.

In order to find high-order terms in the asymptotic expansion of the smooth density
of states numerically, we need to apply an appropriate smoothing procedure. We use the
method of repeated integration [11]. Define

Fn(k) =
∫ k

0
dk1

∫ k1

0
dk2 . . .

∫ kn−1

0
dkn d(kn) . (32)

Note thatF1(k) is just the number-counting functionN(k). Each integration smooths the
function, i.e. more terms in the asymptotic expansion for the smooth part may be compared.
However, each integration of the asymptotic series introduces an additional constant of
integration. ForF̄1(k) = N̄(k) the additional constant of integration, for the unit circle,
is 1

6. We do not know how to generally find the constants of integrations introduced with
each integration.

The number-counting function can only be compared (without additional smoothing) to
the first two terms of the smooth part, as fluctuations are larger than unity. For comparing
the constant term inN̄(k), F2(k) is needed, and for comparing the third term ind̄(k)

(equation (6)),F3(k) is needed. For the unit circle with Dirichlet boundary conditions, its
smooth part is given by

F̄3(k) = k4

48
− k3

12
+ k2

12
+ k ln k − k

128
+ ck + · · · . (33)

In figure 1(a) we present results for comparingF3(k) with the first three terms inF̄3(k)

(equation (33)). (F3(k) was calculated fork < 600 using the first 89 699 eigenvalues of the
circle.) The curve grows asymptotically as the fourth term in the expansion (33), and by
subtracting it (see figure 1(b)) the constantc is determined to be approximately−0.002.

It was stated in section 1 that for the circleη(k) and η̄(k) are asymptotically equal. In
the general case,η(k) contains oscillatory contributions from trapped periodic orbits. There
are no trapped classical orbits in the circle, but there are non-classical trapped periodic
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Figure 1. (a) The function F3(k) −
k4/48+ k3/12− k2/12 for the unit circle
with Dirichlet boundary conditions, as
calculated from the exact eigenvalues,
compared with the fourth term in the
expansion (33)(k ln k − k)/128. (b) The
difference between the two curves, which
has large fluctuations around a straight line
with a slope of approximatelyc = −0.002.

orbits, namely creeping orbits which go around the circle. (Creeping orbits were described
in [18], and introduced in the Gutzwiller trace formula in [21].) To obtain the contribution
of the creeping orbits to the total phase shift, one should consider the terms neglected when
calculatingη(k) by changing the sum in (26) into an integral,

η′
m(k) = 2

π2k

∫ ∞

−∞
dl

1

H−
l (k)H+

l (k)
exp(2π iml) (34)

for m 6= 0. The integral may be calculated by the method used in [18, 19] for creeping wave
contributions. The result forη′

m(k) is oscillatory, and corresponds to a creeping orbit which
goes around the circle|m| times. The contribution is exponentially small, and therefore
vanishes asymptotically to any order. However, in practice these oscillations are observed
in numerical calculations of the total phase shift for lowk.

The last point to be addressed is an issue raised in a recent work [22], where the
Fredholm determinant of the integral kernel of the boundary integral equation was studied.
It was pointed out that up to terms of orderk−1 the smooth interior counting function for
Dirichlet boundary conditions̄ND(k) coincides with 1/2π times the smooth total phase shift
for the exterior problem with Neumann boundary conditionsη̄N (k). Our work confirms the
above result, and states further that the agreement between the two functions breaks at
exactly the term of orderk−1.

So far we have dealt exclusively with the consequences of the interior–exterior duality
where the exterior problem is defined in the plane. Another variant of the same principle
is the scattering system defined by connecting a ‘waveguide’ to the billiard in a way that is
discussed and explained in [1, 2]. Here also, the spectrum of the billiard is determined by
locating the values of the wavenumberk for which one of the eigenvalues of the scattering
matrix obtains the value 1. In this set-up, however, one has to consider the generalizedS

matrix [23], namely, the matrix which describes also transitions between evanescent modes
in the waveguide. Using the analogue of (2) one expects to get a relation between the total
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phase shift and the interior counting function. We cannot present here a detailed theory,
but would like to examine one simple case, namely the quantization of a square billiard, by
the waveguide method.

Consider a square billiard of sizea. The scattering problem is formed by connecting
a waveguide of widtha to one of the edges of the square [2] (the square thus forms an
extension of lengtha to the waveguide). The scattering matrix is diagonal, and is given by

Sn,n′(k) = − exp(2π i
√

(ka/π)2 − n2)δnn′ . (35)

One can easily check that the spectrum of the square is obtained by requiring that any of
the phases in (35) is an integer multiple of 2π . The number of conducting modes3 is
equal to the integer part ofka/π . The total phase shift is given by

η(k) =
3∑

n=1

√
(ka/π)2 − n2 − 3

2
. (36)

Using the Poisson summation formula and other standard relations, one gets

η(k) = (ka)2

4π
− ka

π
+ 1

4
+ ka

2π

∞∑
m=1

1

m
J1(2mka) − 1

2π

∞∑
m=1

1

m
sin(2mka) . (37)

This is an exact equality which can be interpreted in the following way. The expression
appearing in the upper line of (37) is the smooth part ofη(k). It coincides with the
spectral counting function̄N(k) for the square which consists of three terms only—the area,
circumference and corners terms [11]. We thus see that in this method of quantization, the
problem which was discussed throughout this paper does not arise, at least for the leading
contributions. The other terms in (37) are the oscillatory contributions toη(k). They can be
interpreted as due to trapped periodic manifolds. The first infinite sum is the contribution
of the (open) manifold of periodic orbits which are parallel to the transverse motion in
the waveguide. The last sum is due to the limiting periodic orbits which run along the
transverse edges of the billiard. These two limiting orbits are the closure of the manifold
mentioned previously. We thus see that the oscillatory part of (37) consists of contributions
which exhaust all possibletrapped periodic motion in the open billiard. We would like to
emphasize again that this result is exact.
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